The Display Register or X Register shows the result after the execution of a Program.
In the Python code, the X Register corresponds to the variable "x".
The Display History shows the values of the Display Register each time the Program encounters the "2nd Pause" key.
The real Calculator would pause for a second while the Emulator keeps track of the X Register.
In the Python code, the Display History is stored in the "regx" list.
The Display Register is editable. Enter a list of numbers separated by spaces to change the Data. Then click elsewhere to see the effect of the change in the Program. Or press the Enter key to run the Program with the new Data. For example, suppose the Data begins with 10 STO 1 20 STO 2 30 STO 3 and you want to replace the first two with 11 STO 1 22 STO 2. You can either edit the program directly or enter 11 22 in the Display Register. This is handy especially with games.
# | History |
---|---|
Current. | 0 |
Program Instructions/Keys
# Black Jack
# Play Blackjack against the calculator!
# Enter 1 to draw a card then then press Return.
# The calculator will return your card from 1 to 11.
# Keep drawing to get as close as possible to 21.
# You will lose the game if you exceed 21.
# Enter 0 when you are happy with your hand.
# The calculator then draws its cards and displays the overall score.
# For example, 3.2 means you have won 3 times and lost twice.
# You can check the cards that have been drawn in the History.
# You cards are shown as positive numbers, those of the calculator as negative numbers.
# Source: "Ordinateur de poche n°21.pdf#page=53", p. 53
import re
from math import *
from goto import with_goto # pip install goto-statement
@with_goto
def main():
global ee, mem, rounding, stack, unit, x
label .label_rst
# Data Input
# Your choice
x = 1 # 1
mem[5] = x # STO 5 (32 0)
# Data Preprocessing
x = 0 # 0
mem[7] = x # STO 7 (32 0)
x = mem[3] # RCL 3 (33 0)
# Seed != 0?
if x != mem[7]: # INV 2nd x=t (- 66)
goto .label_3 # GTO 3 (51 0)
# Set the seed
x = 0.220838 # 0.220838
mem[3] = x # STO 3 (32 0)
label .label_3 # 2nd Lbl 3 (86 0)
# Stop drawing?
x = mem[5] # RCL 5 (33 0)
if x == mem[7]: # 2nd x=t (66)
goto .label_0 # GTO 0 (51 0)
goto .label_1 # GTO 1 (51 0)
# Data Processing (59 steps)
# The calculator plays
label .label_0 # 2nd Lbl 0 (86 0)
sbr_4() # SBR 4 (61 0)
x = -x # +/- (84)
regx.append(fix(x)) # 2nd Pause (36)
mem[2] -= x # INV SUM 2 (- 34 0)
x = mem[2] # RCL 2 (33 0)
# Total>=22?
if x >= mem[7]: # 2nd x>=t (76)
# Yes, the calculator lost
goto .label_6 # GTO 6 (51 0)
y = mem[7] # x<>t (22)
mem[7] = x
x = y
x = mem[1] # RCL 1 (33 0)
# Same hand values?
if x == mem[7]: # 2nd x=t (66)
# Yes, no winner
goto .label_7 # GTO 7 (51 0)
# Your hand value greater?
if x >= mem[7]: # 2nd x>=t (76)
# Yes, the calculor always keeps drawing!
goto .label_0 # GTO 0 (51 0)
goto .label_5 # GTO 5 (51 0)
# You play
label .label_1 # 2nd Lbl 1 (86 0)
sbr_4() # SBR 4 (61 0)
mem[0] = x # STO 0 (32 0)
regx.append(fix(x)) # 2nd Pause (36)
mem[1] += x # SUM 1 (34 0)
x = mem[1] # RCL 1 (33 0)
# Total>=22?
if x >= mem[7]: # 2nd x>=t (76)
# Yes, you lost
goto .label_5 # GTO 5 (51 0)
x = mem[0] # RCL 0 (33 0)
raise UserWarning('R/S') # R/S (81)
label .label_5 # 2nd Lbl 5 (86 0)
# Game lost
x = 0.1 # 0.1
mem[4] += x # SUM 4 (34 0)
goto .label_7 # GTO 7 (51 0)
label .label_6 # 2nd Lbl 6 (86 0)
# Game won
x = 1 # 1
mem[4] += x # SUM 4 (34 0)
label .label_7 # 2nd Lbl 7 (86 0)
# Reset hand values
x = 0 # 0
mem[1] = x # STO 1 (32 0)
mem[2] = x # STO 2 (32 0)
# Score
x = mem[4] # RCL 4 (33 0)
rounding = 1 # 2nd Fix 1 (48)
regx.append(fix(x)) # 2nd Pause (36)
raise UserWarning('R/S') # R/S (81)
label .end
# Subroutine: Card draw
@with_goto
def sbr_4():
global ee, mem, rounding, stack, unit, x
label .label_4 # 2nd Lbl 4 (86 0)
x = 22 # 22
y = mem[7] # x<>t (22)
mem[7] = x
x = y
x = mem[3] # RCL 3 (33 0)
x = pow(10, x) # INV 2nd log (- 18)
x = x - int(x) # INV 2nd Int (- 49)
mem[3] = x # STO 3 (32 0)
stack.append(x) # X (55)
x = 11 # 11
y = stack.pop() # + (75)
x = y * x
stack.append(x)
x = 1 # 1
y = stack.pop() # = (85)
x = y + x
x = int(x) # 2nd Int (49)
rounding = None # INV 2nd Fix (- 48)
label .end # INV SBR (- 61)
# Note that this program would not fit into a real calculator!
# Internal functions
def degrees2dms(degrees):
"""Convert decimal degrees to degrees, minutes, seconds."""
degrees = float(degrees)
is_positive = degrees >= 0
if not is_positive:
degrees = -degrees
minutes, seconds = divmod(degrees * 3600, 60)
degrees, minutes = divmod(minutes, 60)
# Internal mantissa has 11 digits on TI-57
seconds = f"{seconds:016.13f}".replace(".", "")
dms = f"{int(degrees)}.{int(minutes):02}{seconds}".rstrip("0")
if not is_positive:
dms = "-" + dms
return dms
def dms2degrees(dms):
"""Convert degrees, minutes, seconds to decimal degrees."""
match = re.fullmatch(
r"(?P[+-])?(?P[0-9]+)\.?(?P[0-9]{1,2})?(?P[0-9]{1,2})?(?P[0-9]*)",
str(dms),
)
if match is None:
raise Exception(f"Calculator error: invalid DMS angle {dms}")
angle = match.groupdict()
degrees = float(angle["degrees"])
if angle["minutes"]:
if len(angle["minutes"]) == 1:
angle["minutes"] += "0"
degrees += float(angle["minutes"]) / 60
if angle["seconds"]:
if len(angle["seconds"]) == 1:
angle["seconds"] += "0"
degrees += float(angle["seconds"]) / 3600
if angle["remainder"]:
degrees += float("0." + angle["remainder"]) / 3600
if angle["sign"] == "-":
degrees = -degrees
return degrees
def fix(number):
"""Round a number and/or convert it to the scientific notation."""
global ee, rounding
if ee:
# The scientific notation is on
if rounding is None:
# Default to the calculator 7 digit precision
number = f"{number:.7E}"
# Remove trailing 0s
number = re.sub("0+E", "E", number)
else:
# Round as exponent with the given precision
number = f"{number:.{rounding}E}"
elif rounding is not None:
# Rounding is on
number = f"{number:.{rounding}f}"
else:
# No rounding
number = str(number)
return number
def grd2rad(gradian):
"""Convert gradian to radian."""
return (gradian / 200) * pi
def get_calculator_state():
"""Return the calculator sate."""
global ee, error, mem, regx, rounding, stack, unit, x
return {
"ee": ee,
"error": error,
"fixed_x": fix(x),
"mem": mem,
"regx": regx,
"rounding": rounding,
"stack": stack,
"unit": unit,
"x": x,
}
def init_calculator_state(state={}):
"""Initialize the calculator state.
Must be called before running the program, see run().
ee -- Scientific notation (EE)
error -- Syntax error etc.
mem -- Memories (STO)
regx -- History of values displayed before a pause (2nd pause)
rounding -- Number of digit after the decimal point (2nd Fix)
stack -- Internal memory stack used for computing nested operations
unit -- Angle unit (2nd Deg, 2nd Rad, 2nd Grad)
x -- Display register or X register
"""
global ee, error, mem, regx, rounding, stack, unit, x
ee = state["ee"] if "ee" in state else False
error = state["error"] if "error" in state else None
mem = state["mem"] if "mem" in state else [0 for i in range(8)]
regx = state["regx"] if "regx" in state else []
rounding = state["rounding"] if "rounding" in state else None
stack = state["stack"] if "stack" in state else []
unit = state["unit"] if "unit" in state else "Deg"
x = state["x"] if "x" in state else 0
def rad2grd(radian):
"""Convert radian to gradian."""
return (radian / pi) * 200
def rad2unit(number):
"""Convert radian to degree or gradian."""
global unit
number = float(number)
if unit == "Deg":
number = degrees(number)
elif unit == "Grd":
number = rad2grd(number)
return number
def run_program():
"""Run the program (the entry point).
The calculator must be initialized beforehand, see init_calculator_state().
"""
global error, x
try:
main()
except ZeroDivisionError:
x = 9.9999999
except UserWarning: # R/S key
pass
except Exception as e:
error = str(e)
def unit2rad(number):
"""Convert degree or gradian to radian."""
global unit
number = float(number)
if unit == "Deg":
number = radians(number)
elif unit == "Grd":
number = grd2rad(number)
return number
# Program execution, uncomment to run the file on its own.
# init_calculator_state()
# run_program()
# calculator_state = get_calculator_state()
# print(calculator_state)